DeepUMQA: Ultrafast Shape Recognition-based Protein Model Quality Assessment using Deep Learning

Author:

Guo Sai-Sai,Liu Jun,Zhou Xiao-GenORCID,Zhang Gui-Jun

Abstract

AbstractMotivationProtein model quality assessment is a key component of protein structure prediction. In recent research, the voxelization feature was used to characterize the local structural information of residues, but it may be insufficient for describing residue-level topological information. Design features that can further reflect residue-level topology when combined with deep learning methods are therefore crucial to improve the performance of model quality assessment.ResultsWe developed a deep-learning method, DeepUMQA, based on Ultrafast Shape Recognition (USR) for the residue-level single-model quality assessment. In the framework of the deep residual neural network, the residue-level USR feature was introduced to describe the topological relationship between the residue and overall structure by calculating the first moment of a set of residue distance sets and then combined with 1D, 2D, and voxelization features to assess the quality of the model. Experimental results on test datasets of CASP13, CASP14, and CAMEO show that USR could complement the voxelization feature to comprehensively characterize residue structure information and significantly improve the model assessment accuracy. DeepUMQA outperformed the state-of-the-art single-model quality assessment methods, including ProQ2, ProQ3, ProQ3D, Ornate, VoroMQA, and DeepAccNet.AvailabilityThe source code and executable are freely available at https://github.com/iobio-zjut/DeepUMQA.Contactzgj@zjut.edu.cn

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. AlphaFold at CASP13;Bioinformatics,2019

2. Ultrafast shape recognition to search compound databases for similar molecular shapes

3. Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds;Leonardo Journal of Sciences,2006

4. QAcon: single model quality assessment using protein structural and contact information with machine learning techniques;Bioinformatics,2017

5. Beyond the Twilight Zone: Automated prediction of structural properties of proteins by recursive neural networks and remote homology information

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3