Author:
Liu Jun,He Guang-Xing,Zhao Kai-Long,Zhang Gui-Jun
Abstract
AbstractMotivationThe successful application of deep learning has promoted progress in protein model quality assessment. How to use model quality assessment to further improve the accuracy of protein structure prediction, especially not reliant on the existing templates, is helpful for unraveling the folding mechanism. Here, we investigate whether model quality assessment can be introduced into structure prediction to form a closed-loop feedback, and iteratively improve the accuracy of de novo protein structure prediction.ResultsIn this study, we propose a de novo protein structure prediction method called RocketX. In RocketX, a feedback mechanism is constructed through the geometric constraint prediction network GeomNet, the structural simulation module, and the model quality evaluation network EmaNet. In GeomNet, the co-evolutionary features extracted from MSA that search from the sequence databases are sent to an improved residual neural network to predict the inter-residue geometric constraints. The structure model is folded based on the predicted geometric constraints. In EmaNet, the 1D and 2D features are extracted from the folded model and sent to the deep residual neural network to estimate the inter-residue distance deviation and per-residue lDDT of the model, which will be fed back to GeomNet as dynamic features to correct the geometries prediction and progressively improve model accuracy. RocketX is tested on 483 benchmark proteins and 20 FM targets of CASP14. Experimental results show that the closed-loop feedback mechanism significantly contributes to the performance of RocketX, and the prediction accuracy of RocketX outperforms that of the state-of-the-art methods trRosetta (without templates) and RaptorX. In addition, the blind test results on CAMEO show that although no template is used, the prediction accuracy of RocketX on medium and hard targets is comparable to the advanced methods that integrate templates.AvailabilityThe RocketX web server are freely available at http://zhanglab-bioinf.com/RocketX.Contactzgj@zjut.edu.cn
Publisher
Cold Spring Harbor Laboratory
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献