De novo protein structure prediction by incremental inter-residue geometries prediction and model quality assessment using deep learning

Author:

Liu Jun,He Guang-Xing,Zhao Kai-Long,Zhang Gui-Jun

Abstract

AbstractMotivationThe successful application of deep learning has promoted progress in protein model quality assessment. How to use model quality assessment to further improve the accuracy of protein structure prediction, especially not reliant on the existing templates, is helpful for unraveling the folding mechanism. Here, we investigate whether model quality assessment can be introduced into structure prediction to form a closed-loop feedback, and iteratively improve the accuracy of de novo protein structure prediction.ResultsIn this study, we propose a de novo protein structure prediction method called RocketX. In RocketX, a feedback mechanism is constructed through the geometric constraint prediction network GeomNet, the structural simulation module, and the model quality evaluation network EmaNet. In GeomNet, the co-evolutionary features extracted from MSA that search from the sequence databases are sent to an improved residual neural network to predict the inter-residue geometric constraints. The structure model is folded based on the predicted geometric constraints. In EmaNet, the 1D and 2D features are extracted from the folded model and sent to the deep residual neural network to estimate the inter-residue distance deviation and per-residue lDDT of the model, which will be fed back to GeomNet as dynamic features to correct the geometries prediction and progressively improve model accuracy. RocketX is tested on 483 benchmark proteins and 20 FM targets of CASP14. Experimental results show that the closed-loop feedback mechanism significantly contributes to the performance of RocketX, and the prediction accuracy of RocketX outperforms that of the state-of-the-art methods trRosetta (without templates) and RaptorX. In addition, the blind test results on CAMEO show that although no template is used, the prediction accuracy of RocketX on medium and hard targets is comparable to the advanced methods that integrate templates.AvailabilityThe RocketX web server are freely available at http://zhanglab-bioinf.com/RocketX.Contactzgj@zjut.edu.cn

Publisher

Cold Spring Harbor Laboratory

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3