Evolution of diapause in the African turquoise killifish by remodeling ancient gene regulatory landscape

Author:

Singh Param PriyaORCID,Reeves G. Adam,Contrepois KévinORCID,Ellenberger Mathew,Hu Chi-Kuo,Snyder Michael P.,Brunet Anne

Abstract

ABSTRACTSuspended animation states such as hibernation or diapause allow organisms to survive extreme environments. But the mechanisms underlying the evolution of these extreme survival states are unknown. The African turquoise killifish has evolved diapause as a form of suspended development to survive the complete drought that occurs every year in its habitat. Here we show that many gene duplicates – paralogs – exhibit specialized expression in diapause versus normal development in the African turquoise killifish. Surprisingly, paralogs with specialized expression in diapause are evolutionarily very ancient, and they are also present even in vertebrates that do not exhibit diapause. Profiling the chromatin accessibility landscape among different fish species reveals an evolutionarily recent increase in chromatin accessibility at these very ancient paralogs, suggesting rewiring of their regulatory landscape. The increase in chromatin accessibility in the African turquoise killifish is linked to the presence of new binding sites for transcription factors (e.g., FOXO, REST, and PPAR), due to both de novo mutations and transposable element insertion. Interestingly, accessible chromatin regions in diapause are enriched for lipid metabolism genes. By performing lipidomics in different fish species, we uncover a specific lipid profile in African turquoise killifish embryos in diapause. Notably, select very long-chain fatty acids are high in diapause, suggesting they may be used for long-term survival in this state. Together, our multi-omic analysis indicates that diapause is driven by regulatory innovation of very ancient gene programs that are critical for survival. Our work also suggests a mechanism for how complex adaptations evolve in nature and offers strategies by which a suspended animation program could be reactivated in other species for long-term preservation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3