Abstract
AbstractThe quest to model and modulate embryonic development became a recent cornerstone of stem cell and developmental biology. Mammalian developmental timing is adjustable in vivo by preserving preimplantation embryos in a dormant state called diapause. Inhibition of the growth regulator mTOR (mTORi) pauses mouse development in vitro, yet constraints to pause duration are unrecognized. By comparing the response of embryonic and extraembryonic stem cells to mTORi-induced pausing, we identified lipid usage as a bottleneck to developmental pausing. Enhancing fatty acid oxidation (FAO) boosts embryo longevity, while blocking it reduces the pausing capacity. Genomic and metabolic analyses of single embryos point toward a deeper dormant state in FAO-enhanced pausing and reveal a link between lipid metabolism and embryo morphology. Our results lift a constraint on in vitro embryo survival and suggest that lipid metabolism may be a critical metabolic transition relevant for longevity and stem cell function across tissues.One-Sentence SummaryFacilitating fatty acid oxidation by carnitine supplementation enhances mTOR inhibition-mediated developmental pausing.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献