Proteins mediating different DNA topologies block RNAP elongation with different efficiency

Author:

Lu Yue,Borias Gustavo,Voros Zsuzsanna,Henderson Christine,Shearwin KeithORCID,Dunlap David,Finzi LauraORCID

Abstract

AbstractMany DNA-binding proteins induce topological structures such as loops or wraps through binding to two or more sites along the DNA. Such topologies may regulate transcription initiation and may also be roadblocks for elongating RNA polymerase (RNAP). Remarkably, a lac repressor protein bound to a weak binding site (O2) does not obstruct RNAP in vitro but becomes an effective roadblock when securing a loop of 400 bp between two widely separated binding sites. To investigate whether topological structures mediated by proteins bound to closely spaced binding sites and interacting cooperatively also represent roadblocks, we compared the effect of the λ CI and 186 CI repressors on RNAP elongation. Dimers of λ CI can bind to two sets of adjacent sites separated by hundreds of bp and form a DNA loop via the interaction between their C-terminal domains. The 186 CI protein can form a wheel of seven dimers around which specific DNA binding sequences can wrap. Atomic force microscopy (AFM) was used to image transcription elongation complexes of DNA templates that contained binding sites for either the λ or 186 CI repressor. While RNAP elongated past λ CI on unlooped DNA, as well as past 186 CI-wrapped DNA, it did not pass the λ CI-mediated loop. These results may indicate that protein-mediated loops with widely separated binding sites more effectively block transcription than a wrapped topology with multiple, closely spaced binding sites.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3