HP1 proteins compact DNA into mechanically and positionally stable phase separated domains

Author:

Keenen Madeline M12,Brown David3,Brennan Lucy D1,Renger Roman45,Khoo Harrison6,Carlson Christopher R27,Huang Bo138ORCID,Grill Stephan W49ORCID,Narlikar Geeta J1ORCID,Redding Sy110ORCID

Affiliation:

1. Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States

2. Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States

3. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States

4. Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

5. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany

6. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States

7. Department of Physiology, University of California, San Francisco, San Francisco, United States

8. Chan Zuckerberg Biohub, San Francisco, United States

9. Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany

10. Marine Biological Laboratory, Woods Hole, United States

Abstract

In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog’s DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.

Funder

National Cancer Institute

University of California, San Francisco

NOMIS Stiftung

National Institute of General Medical Sciences

Chan Zuckerberg Initiative

Deutsche Forschungsgemeinschaft

H2020 European Research Council

National Science Foundation

Marine Biological Laboratory

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3