Differential geometry methods for constructing manifold-targeted recurrent neural networks

Author:

Claudi FedericoORCID,Branco Tiago

Abstract

AbstractNeural computations can be framed as dynamical processes, whereby the structure of the dynamics within a neural network are a direct reflection of the computations that the network performs. A key step in generating mechanistic interpretations within this computation through dynamics framework is to establish the link between network connectivity, dynamics and computation. This link is only partly understood. Recent work has focused on producing algorithms for engineering artificial recurrent neural networks (RNN) with dynamics targeted to a specific goal manifold. Some of these algorithms only require a set of vectors tangent to the target manifold to be computed, and thus provide a general method that can be applied to a diverse set of problems. Nevertheless, computing such vectors for an arbitrary manifold in a high dimensional state space remains highly challenging, which in practice limits the applicability of this approach. Here we demonstrate how topology and differential geometry can be leveraged to simplify this task, by first computing tangent vectors on a low-dimensional topological manifold and then embedding these in state space. The simplicity of this procedure greatly facilitates the creation of manifold-targeted RNNs, as well as the process of designing task-solving on-manifold dynamics. This new method should enable the application of network engineering-based approaches to a wide set of problems in neuroscience and machine learning. Furthermore, our description of how fundamental concepts from differential geometry can be mapped onto different aspects of neural dynamics is a further demonstration of how the language of differential geometry can enrich the conceptual framework for describing neural dynamics and computation.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Beiran, M. , Dubreuil, A. , Valente, A. , Mastrogiuseppe, F. , and Ostojic, S. (2020). Shaping dynamics with multiple populations in low-rank recurrent networks.

2. Biswas, T. and Fitzgerald, J. E. (2020). A geometric frame- work to predict structure from function in neural networks.

3. The intrinsic attractor manifold and pop- ulation dynamics of a canonical cognitive circuit across waking and sleep;Nat. Neurosci,2019

4. Chung, S. and Abbott, L. F. (2021). Neural population geome- try: An approach for understanding biological and artificial neural networks.

5. Darshan, R. and Rivkind, A. (2021). Learning to represent continuous variables in heterogeneous neural networks.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3