Shaping Dynamics With Multiple Populations in Low-Rank Recurrent Networks

Author:

Beiran Manuel1,Dubreuil Alexis2,Valente Adrian3,Mastrogiuseppe Francesca4,Ostojic Srdjan5

Affiliation:

1. Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure. PSL University, 75005 Paris, France manuel.beiran@ens.fr

2. Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure. PSL University, 75005 Paris, France alexis.dubreuil@gmail.com

3. Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure. PSL University, 75005 Paris, France adrian.valente@ens.fr

4. Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, U.K. f.mastrogiuseppe@ucl.ac.uk

5. Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure. PSL University, 75005 Paris, France srdjan.ostojic@ens.fr

Abstract

An emerging paradigm proposes that neural computations can be understood at the level of dynamic systems that govern low-dimensional trajectories of collective neural activity. How the connectivity structure of a network determines the emergent dynamical system, however, remains to be clarified. Here we consider a novel class of models, gaussian-mixture, low-rank recurrent networks in which the rank of the connectivity matrix and the number of statistically defined populations are independent hyperparameters. We show that the resulting collective dynamics form a dynamical system, where the rank sets the dimensionality and the population structure shapes the dynamics. In particular, the collective dynamics can be described in terms of a simplified effective circuit of interacting latent variables. While having a single global population strongly restricts the possible dynamics, we demonstrate that if the number of populations is large enough, a rank R network can approximate any R-dimensional dynamical system.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3