Ultra-deep sequencing reveals no evidence of oncogenic mutations or enrichment by ex vivo CRISPR/Cas9 genome editing in human hematopoietic stem and progenitor cells

Author:

Cromer M. KyleORCID,Barsan Valentin V.,Jaeger Erich,Wang Mengchi,Hampton Jessica P.,Chen Feng,Kennedy Drew,Khrebtukova Irina,Granat Ana,Truong Tiffany,Porteus Matthew H.ORCID

Abstract

AbstractAs CRISPR-based therapies enter the clinic, evaluation of the safety remains a critical and still active area of study. While whole genome sequencing is an unbiased method for identifying somatic mutations introduced by ex vivo culture and genome editing, this methodology is unable to attain sufficient read depth to detect extremely low frequency events that could result in clonal expansion. As a solution, we utilized an exon capture panel to facilitate ultra-deep sequencing of >500 tumor suppressors and oncogenes most frequently altered in human cancer. We used this panel to investigate whether transient delivery of high-fidelity Cas9 protein targeted to three different loci (using guide RNAs (gRNAs) corresponding to sites at AAVS1, HBB, and ZFPM2) at day 4 and day 10 timepoints post-editing resulted in the introduction or enrichment of oncogenic mutations. In three separate primary human HSPC donors, we identified a mean of 1,488 variants per Cas9 treatment (at <0.07% limit of detection). After filtering to remove germline and/or synonymous changes, a mean of 3.3 variants remained per condition, which were further reduced to six total mutations after removing variants in unedited treatments. Of these, four variants resided at the predicted off-target site in the myelodysplasia-associated EZH2 gene that were subject to ZFPM2 gRNA targeting in Donors 2 and 3 at day 4 and day 10 timepoints. While Donor 1 displayed on-target cleavage at ZFPM2, we found no off-target activity at EZH2. Sanger sequencing revealed a homozygous single nucleotide polymorphism (SNP) at position 14bp distal from the Cas9 protospacer adjacent motif in EZH2 that eliminated any detectable off-target activity. We found no evidence of exonic off-target INDELs with either of the AAVS1 or HBB gRNAs. These findings indicate that clinically relevant delivery of high-fidelity Cas9 to primary HSPCs and ex vivo culture up to 10 days does not introduce or enrich for tumorigenic variants and that even a single SNP outside the seed region of the gRNA protospacer is sufficient to eliminate Cas9 off-target activity with this method of delivery into primary, repair competent human HSPCs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3