Slow TCA flux implies low ATP production in tumors

Author:

Bartman Caroline R.ORCID,Shen Yihui,Lee Won Dong,TeSlaa Tara,Jankowski Connor S.R.,Wang Lin,Yang Lifeng,Roichman Asael,Bhatt Vrushank,Lan Taijin,Hu Zhixian,Xing Xi,Lu Wenyun,Guo Jessie Yanxiang,Rabinowitz Joshua D.

Abstract

SummaryThe tricarboxylic acid (TCA) cycle oxidizes carbon substrates to carbon dioxide, with the resulting high energy electrons fed into the electron transport chain to produce ATP by oxidative phosphorylation. Healthy tissues derive most of their ATP from oxidative metabolism, and the remainder from glycolysis. The corresponding balance in tumors remains unclear. Tumors upregulate aerobic glycolysis (the Warburg effect), yet they also typically require an intact TCA cycle and electron transport chain1–6. Recent studies have measured which nutrients contribute carbon to the tumor TCA metabolites7,8, but not tumor TCA flux: how fast the cycle turns. Here, we develop and validate an in vivo dynamic isotope tracing-mass spectrometry strategy for TCA flux quantitation, which we apply to all major mouse organs and to five tumor models. We show that, compared to the tissue of origin, tumor TCA flux is markedly suppressed. Complementary glycolytic flux measurements confirm tumor glycolysis acceleration, but the majority of tumor ATP is nevertheless made aerobically, and total tumor ATP production is suppressed compared to healthy tissues. In murine pancreatic cancer, this is accommodated by downregulation of the major energy-using pathway in the healthy exocrine pancreas, protein synthesis. Thus, instead of being hypermetabolic as commonly assumed, tumors apparently make ATP at a lower than normal rate. We propose that, as cells de-differentiate into cancer, they eschew ATP-intensive processes characteristic of the host tissue, and that the resulting suppressed ATP demand contributes to the Warburg effect and facilitates cancer growth in the nutrient-poor tumor microenvironment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3