Diazo-carboxyl click chemistry enables rapid and sensitive quantification of carboxylic acid metabolites

Author:

Li CongORCID,Cheng Kunlun,Zhao Qijin,Jin Li,Wang Xuelian,Liufu Tongling,Zhao Xutong,Li Xiaochuan,Wang Xiao,Lyu Jia,Huang Dong,Li Pingping,Chen Xiao-WeiORCID,Wang Zhaoxia,Hu Xinli,Quan Li,Chen ZhixingORCID

Abstract

AbstractCarboxylic acids are central metabolites in bioenergetics, signal transduction and post-translation protein regulation. Unlike its genomic and transcriptomic counterparts, the quest for metabolomic profiling in trace amounts of biomedical samples is prohibitively challenging largely due to the lack of sensitive and robust quantification schemes for carboxylic acids. Based on diazo-carboxyl click chemistry, here we demonstrate DQmB-HA method as a rapid derivatization strategy for the sensitive analysis of hydrophilic, low-molecular-weight carboxylic acids. To the investigated metabolites, DQmB-HA derivatization method renders 5 to 2,000-fold higher response on mass spectrometry along with improved chromatographic separation on commercial UHPLC-MS machines. Using this method, we present the near-single-cell analysis of carboxylic acid metabolites in mouse egg cells before and after fertilization. Malate, fumarate and β-hydroxybutyrate were found to decrease in mouse zygotes. We also showcase the kinetic profiling of TCA-cycle intermediates inside adherent cells cultured in one well of 96-well plates during drug treatment. FCCP and AZD3965 were shown to have overlapped but different effects on the isotope labeling of carboxylic acids. Finally, we apply DQmB-HA method to plasma or serum samples (down to 5 μL) from mice and humans collected on pathological and physiological conditions. The measured changes of succinate, β-hydroxybutyrate, and lactate in blood corroborate previous literatures in ischemia-reperfusion injury mouse model, acute fasting-refeeding mouse model, and human individuals diagnosed with mitochondrial dysfunction diseases, respectively. Overall, DQmB-HA method offers a sensitive, rapid and user-friendly quantification scheme for carboxylic acid metabolites, paving the road toward the ultimate goals of single-cell metabolomic analysis and bedside monitoring of biofluid samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3