The matrisome contributes to the increased rigidity of the bovine ovarian cortex and provides a source of new bioengineering tools to investigate ovarian biology

Author:

Henning Nathaniel F.C.ORCID,Laronda Monica M.ORCID

Abstract

ABSTRACTThe gonadotoxic effects of some cancers significantly increase the risk of developing infertility and cessation of ovary hormones (premature ovarian insufficiency, POI). Fertility preservation in the form of ovarian tissue cryopreservation (OTC) is offered to pediatric and adolescent cancer patients who cannot undergo oocyte retrieval and egg cryopreservation. The cryopreserved ovarian tissue can be transplanted back and has been found to restore fertility in 20 - 40% of transplants and restore hormone function for an average of 3 to 5 years. However, some individuals have primary or metastatic disease within their ovarian tissue and would not be able to transplant it back in its native form. Therefore, there is a need for additional methods for hormone and fertility restoration that would support a safe transplant with increased successful livebirths and long-term hormone restoration. To support these goal, we sought to understand the contribution of the ovarian microenvironment to its physical and biochemical properties to inform bioprosthetic ovary scaffolds that would support isolated follicles. Using atomic force microscopy (AFM), we determined that the bovine ovarian cortex was significantly more rigid than the medulla. To determine if this difference in rigidity was maintained in isolated matrisome proteins from bovine ovarian compartments, we cast and 3D printed hydrogels created from decellularized bovine ovarian cortex and medulla slices. The cast gels and 3D printed bioprosthetic ovary scaffolds from the cortex was still significantly more rigid than the medulla biomaterials. To expand our bioengineering toolbox that will aide in the investigation of how biochemical and physical cues may affect folliculogenesis, we sought to confirm the concentration of matrisome proteins in bovine ovarian compartments. The matrisome proteins, COL1, FN, EMILIN1 and AGRN were more abundant in the bovine ovarian cortex than the medulla. Whereas, VTN was more abundant in the medulla than the cortex and COL4 was present in similar amounts within both compartments. Finally, we removed proteins of interest, EMILIN1 and AGRN, from decellularized bovine ovarian cortex materials and confirmed that this specifically depleted these proteins without affecting the rigidity of cast or 3D printed hydrogels. Taken together our results indicate the existence of a rigidity gradient in the bovine ovary, that this rigidity gradient is maintained in resulting engineered materials strongly implicating a role for matrisome proteins in contributing to the physical properties of the bovine ovary. By establishing additional engineering tools we will continue to explore mechanisms behind matrisome-follicle interactions.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort

2. Primary Ovarian Insufficiency in Adolescents and Young Women;Committee on Adolescent Health Care;The Am Col of Obstet and Gynecol,2014

3. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause

4. Age at Natural Menopause and Total Mortality and Mortality from Ischemic Heart Disease The Adventist Health Study;J Clin Epidemiol,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3