Comparative Tensile Properties and Collagen Patterns in Domestic Cat (Felis catus) and Dog (Canis lupus familiaris) Ovarian Cortical Tissues

Author:

Nagashima Jennifer B.1ORCID,Zenilman Shoshana2,Raab April3ORCID,Aranda-Espinoza Helim4,Songsasen Nucharin1

Affiliation:

1. Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA

2. College of Veterinary Medicine, Cornell University, 144 East Ave, Ithaca, NY 14850, USA

3. College of Veterinary Medicine, Michigan State University, 784 Wilson Rd., East Lansing, MI 48824, USA

4. Fischell Department of Bioengineering, University of Maryland, 3108 A. James Clark Hall, College Park, MD 20742, USA

Abstract

The importance of the ovarian extracellular environment and tissue rigidity on follicle survival and development has gained attention in recent years. Our laboratory has anecdotally observed differences in the rigidity of domestic cat and dog ovarian cortical tissues, which have been postulated to underlie the differences in in vitro culture responses between the species, wherein cat ovarian tissues display higher survival in extended incubation. Here, the tensile strengths of cat and dog ovarian cortical tissues were compared via micropipette aspiration. The underlying collagen patterns, including fiber length, thickness, alignment, curvature, branch points and end points, and overall tissue lacunary and high-density matrix (HDM) were quantified via picrosirius red staining and TWOMBLI analysis. Finally, we explored the potential of MMP (−1 and −9) and TIMP1 supplementation in modulating tissue rigidity, collagen structure, and follicle activation in vitro. No differences in stiffness were observed between cat or dog cortical tissues, or pre- versus post-pubertal status. Cat ovarian collagen was characterized by an increased number of branch points, thinner fibers, and lower HDM compared with dog ovarian collagen, and cat tissues exposed to MMP9 in vitro displayed a reduced Young’s modulus. Yet, MMP exposure had a minor impact on follicle development in vitro in either species. This study contributes to our growing understanding of the interactions among the physical properties of the ovarian microenvironment, collagen patterns, and follicle development in vitro.

Funder

NIH

Smithsonian Institution

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3