B.1.617.3 SARS CoV-2 spike E156G/Δ157-158 mutations contribute to reduced neutralization sensitivity and increased infectivity

Author:

Mishra Tarun,Joshi Garima,Kumar Atul,Dalavi Rishikesh,Pandey Pankaj,Shukla Sanjeev,Mishra Ram Kumar,Chande AjitORCID

Abstract

AbstractSARS CoV-2 variants raise significant concerns due to their ability to cause vaccine breakthrough infections. Here, we sequence-characterized the spike gene, isolated from a breakthrough infection, that corresponded to B.1.617.3 lineage. Delineating the functional impact of spike mutations using reporter pseudoviruses (PV) revealed that N-terminal domain (NTD)-specific E156G/Δ157-158 contributed to increased infectivity and reduced sensitivity to ChAdOx1 nCoV-19 vaccine (Covishield™)-elicited neutralizing antibodies. A six-nucleotide deletion (467-472) in the spike coding region introduced this change in the NTD. We confirmed the presence of E156G/Δ157-158 in the RT-PCR-positive cases concurrently screened, in addition to other circulating spike (S1) mutations like T19R, T95I, L452R, E484Q, and D614G. Notably, E156G/Δ157-158 was present in more than 85% of the sequences reported from the USA, UK, and India in August 2021. The spike PV bearing combination of E156G/Δ157-158 and L452R further promoted infectivity and conferred immune evasion. Additionally, increased cell-to-cell fusion was observed when spike harbored E156G/Δ157-158, L452R, and E484Q, suggesting a combinatorial effect of these mutations. Notwithstanding, the plasma from a recovered individual robustly inhibited mutant spike PV, indicating the increased breadth of neutralization post-recovery. Our data highlights the importance of spike NTD-specific changes in determining infectivity and immune escape of variants.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. WHO. WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. https://covid19.who.int/.

2. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology;5;Nature Microbiology 2020,2020

3. WHO. Tracking SARS-CoV-2 variants. 2021 https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.

4. SARS-CoV-2 B.1.617.2 Delta variant replication, sensitivity to neutralising antibodies and vaccine breakthrough

5. High failure rate of ChAdOx1 in healthcare workers during Delta variant surge: A case for continued use of masks post-vaccination

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3