Author:
Chandio Bramsh Qamar,Chattopadhyay Tamoghna,Owens-Walton Conor,Reina Julio E. Villalon,Nabulsi Leila,Thomopoulos Sophia I.,Garyfallidis Eleftherios,Thompson Paul M.
Abstract
AbstractWhole-brain tractograms generated from diffusion MRI digitally represent the white matter structure of the brain and are composed of millions of streamlines. Such tractograms can have false positive and anatomically implausible streamlines. To obtain anatomically relevant streamlines and tracts, supervised and unsupervised methods can be used for tractogram clustering and tract extraction. Here we propose FiberNeat, an unsupervised white matter tract filtering method. FiberNeat takes an input set of streamlines that could either be unlabeled clusters or labeled tracts. Individual clusters/tracts are projected into a latent space using nonlinear dimensionality reduction techniques, t-SNE and UMAP, to find spurious and outlier streamlines. In addition, outlier streamline clusters are detected using DBSCAN and then removed from the data in streamline space. We performed quantitative comparisons with expertly delineated tracts. We ran FiberNeat on 131 participants’ data from the ADNI3 dataset. We show that applying FiberNeat as a filtering step after bundle segmentation improves the quality of extracted tracts and helps improve tractometry.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献