Learning Optimal White Matter Tract Representations from Tractography using a Deep Generative Model for Population Analyses

Author:

Feng YixueORCID,Chandio Bramsh Q.ORCID,Chattopadhyay Tamoghna,Thomopoulos Sophia I.ORCID,Owens-Walton ConorORCID,Jahanshad Neda,Garyfallidis Eleftherios,Thompson Paul M.ORCID

Abstract

ABSTRACTWhole brain tractography is commonly used to study the brain’s white matter fiber pathways, but the large number of streamlines generated - up to one million per brain - can be challenging for large-scale population studies. We propose a robust dimensionality reduction framework for tractography, using a Convolutional Variational Autoencoder (ConvVAE) to learn low-dimensional embeddings from white matter bundles. The resulting embeddings can be used to facilitate downstream tasks such as outlier and abnormality detection, and mapping of disease effects on white matter tracts in individuals or groups. We design experiments to evaluate how well embeddings of different dimensions preserve distances from the original high-dimensional dataset, using distance correlation methods. We find that streamline distances and inter-bundle distances are well preserved in the latent space, with a 6-dimensional optimal embedding space. The generative ConvVAE model allows fast inference on new data, and the smooth latent space enables meaningful decodings that can be used for downstream tasks. We demonstrate the use of a ConvVAE model trained on control subjects’ data to detect structural anomalies in white matter tracts in patients with Alzheimer’s disease (AD). Using ConvVAEs to facilitate population analyses, we identified 6 tracts with statistically significant differences between AD and controls after controlling for age and sex effect, visualizing specific locations along the tracts with high anomalies despite large inter-subject variations in fiber bundle geometry.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3