Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations

Author:

Chandio Bramsh Qamar,Risacher Shannon Leigh,Pestilli Franco,Bullock Daniel,Yeh Fang-Cheng,Koudoro Serge,Rokem Ariel,Harezlak Jaroslaw,Garyfallidis Eleftherios

Abstract

AbstractTractography has created new horizons for researchers to study brain connectivity in vivo. However, tractography is an advanced and challenging method that has not been used so far for medical data analysis at a large scale in comparison to other traditional brain imaging methods. This work allows tractography to be used for large scale and high-quality medical analytics. BUndle ANalytics (BUAN) is a fast, robust, and flexible computational framework for real-world tractometric studies. BUAN combines tractography and anatomical information to analyze the challenging datasets and identifies significant group differences in specific locations of the white matter bundles. Additionally, BUAN takes the shape of the bundles into consideration for the analysis. BUAN compares the shapes of the bundles using a metric called bundle adjacency which calculates shape similarity between two given bundles. BUAN builds networks of bundle shape similarities that can be paramount for automating quality control. BUAN is freely available in DIPY. Results are presented using publicly available Parkinson’s Progression Markers Initiative data.

Funder

National Institutes of Health

National Institute of Mental Health

University of Washington from the Gordon

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3