Mechanism of optimal time-course COVID-19 vaccine prioritization based on non-Markovian steady-state prediction

Author:

Feng MiORCID,Tian LiangORCID,Zhou ChangsongORCID

Abstract

AbstractVaccination is essential for controlling the coronavirus disease (COVID-19) pandemic. An effective time-course strategy for the allocation of COVID-19 vaccines is crucial given that the global vaccine supply will still be limited in some countries/regions in the near future and that mutant strains have emerged and will continue to spread worldwide. Both asymptomatic and symptomatic transmission have played major roles in the COVID-19 pandemic, which can only be properly described as a typical non-Markovian process. However, the prioritization of vaccines in the non-Markovian framework still lacks sufficient research, and the underlying mechanism of the time-course vaccine allocation optimization has not yet been uncovered. In this paper, based on an age-stratified compartmental model calibrated through clinical and epidemiological data, we propose optimal vaccination strategies (OVS) through steady-state prediction in the non-Markovian framework. This OVS outperforms other empirical vaccine prioritization approaches in minimizing cumulative infections, cumulative deaths, or years of life lost caused by the pandemic. We found that there exists a fast decline in the prevention efficiency of vaccination if vaccines are solely administered to a selected age group, which indicates that the widely adopted strategy to continuously vaccinate high-risk group is not optimal. Through mathematical analysis of the model, we reveal that dynamic vaccine allocations to combinations of different age groups is necessary to achieve optimal vaccine prioritization. Our work not only provides meaningful references for vaccination in countries currently lacking vaccines and for vaccine allocation strategies to prevent mutant strains in the future, but also reveals the mechanism of dynamic vaccine allocation optimization, forming a theoretical and modelling framework empirically applicable to the optimal time-course prioritization.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Johns Hopkins University. COVID-19 Data Repository by the Center for Systems Science and Engineering at Johns Hopkins University. https://systems.jhu.edu/research/public-health/ncov (29 June 2021, date last accessed).

2. Our World in Data. Coronavirus (COVID-19) Vaccinations - Statistics and Research. https://ourworldindata.org/covid-vaccinations (29 June 2021, date last accessed).

3. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus

4. Vaccine optimization for COVID-19: Who to vaccinate first?

5. Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3