Crustacean cardiac ganglion model reveals constraints on morphology and conductances

Author:

Dopp Dan,Samarth Pranit,Wang Jing,Kick Daniel,Schulz David J.ORCID,Nair Satish S.ORCID

Abstract

ABSTRACTThe crustacean cardiac ganglion (CG) network coordinates the rhythmic contractions of the heart muscle to control the circulation of blood. The network consists of 9 cells, 5 large motor cells (LC1-5) and 4 small endogenous pacemaker cells (SCs). We report a new three-compartmental biophysical model of an LC that is morphologically realistic and includes provision for inputs from the SCs via a gap-junction coupled spike-initiation-zone (SIZ) compartments. To determine physiologically viable LC models in this realistic configuration, maximal conductances in three compartments of an LC are determined by random sampling from a biologically-characterized 9D-parameter space, followed by a three-stage rejection protocol that checks for conformity with electrophysiological features from single cell traces. LC models that pass the single cell rejection protocol are then incorporated into a network model which is then used in a final rejection protocol stage. Using disparate experimental data, the study provides hitherto unknown structure-function insights related to the crustacean cardiac ganglion large cell, including predictions about morphology including the role of its SIZ, and the differential roles of active conductances in the three compartments. Further, we extend analyses of emergent conductance relationships and correlations in model neurons relative to their biological counterparts, allowing us to make inferences both with respect to the biological system as well as the implications of the ability to detect such relationships in populations of model neurons going forward.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3