The ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryo-tomography

Author:

Subramanian Poorna,Pirbadian Sahand,El-Naggar Mohamed Y.,Jensen Grant J.

Abstract

Abstract:Bacterial nanowires have garnered recent interest as a proposed Extracellular Electron Transfer (EET) pathway that links the bacterial electron transport chain to solid-phase electron acceptors away from the cell. In vivofluorescence Light Microscopy (fLM) imaging recently showed that Shewanella oneidensis MR-1 nanowires are extensions of the outer membrane that contain EET components. However, their fine structure and distribution of cytochrome electron carriers remained unclear, making it difficult to evaluate the electron transport mechanism along the nanowires. Here, we report high-resolution images of nanowires using Electron Cryo-Tomography (ECT). We developed a robust method for fLM imaging of nanowire growth on electron microscopy grids and used correlative light and electron microscopy to identify and image the same nanowires by ECT. Our results confirm that S. oneidensis nanowires are outer membrane extensions, and further reveal that nanowires are dynamic chains of interconnected Outer Membrane Vesicles (OMVs) with variable dimensions, curvature, and extent of tubulation. Junction densities that potentially stabilize OMV chains are seen between neighboring vesicles in cryotomograms. Our ECT results also provide the first hints of the positions and packing of periplasmic and outer membrane proteins consistent with cytochromes. We observe tight packing of putative cytochromes along lateral patches that extend tens of nanometers, but not across the micrometer scale of whole nanowires. We therefore propose that electron transfer along nanowires involves a combination of direct hopping and diffusive events that link neighboring redox proteins.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3