Electron tunneling through proteins

Author:

Gray Harry B.,Winkler Jay R.

Abstract

1. History 3422. Activation barriers 3432.1 Redox potentials 3442.2 Reorganization energy 3443. Electronic coupling 3454. Ru-modified proteins 3484.1 Reorganization energy 3494.1.1 Cyt c 3494.1.2 Azurin 3504.2 Tunneling timetables 3525. Multistep tunneling 3576. Protein–protein reactions 3596.1 Hemoglobin (Hb) hybrids 3596.2 Cyt c/cyt b5 complexes 3606.3 Cyt c/cyt c peroxidase complexes 3606.4 Zn–cyt c/Fe–cyt c crystals 3617. Photosynthesis and respiration 3627.1 Photosynthetic reaction centers (PRCs) 3627.2 Cyt c oxidase (CcO) 3648. Concluding remarks 3659. Acknowledgments 36610. References 366Electron transfer processes are vital elements of energy transduction pathways in living cells. More than a half century of research has produced a remarkably detailed understanding of the factors that regulate these ‘currents of life’. We review investigations of Ru-modified proteins that have delineated the distance- and driving-force dependences of intra-protein electron-transfer rates. We also discuss electron transfer across protein–protein interfaces that has been probed both in solution and in structurally characterized crystals. It is now clear that electrons tunnel between sites in biological redox chains, and that protein structures tune thermodynamic properties and electronic coupling interactions to facilitate these reactions. Our work has produced an experimentally validated timetable for electron tunneling across specified distances in proteins. Many electron tunneling rates in cytochrome c oxidase and photosynthetic reaction centers agree well with timetable predictions, indicating that the natural reactions are highly optimized, both in terms of thermodynamics and electronic coupling. The rates of some reactions, however, significantly exceed timetable predictions; it is likely that multistep tunneling is responsible for these anomalously rapid charge transfer events.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3