The C-terminal non-catalytic domain of Mkp-1 phosphatase harbors a complex signal for rapid proteasome degradation in enterocytes

Author:

Wang Jin,Grishin AnatolyORCID,Delaplain Patrick T.ORCID,Gayer Christopher P.ORCID,Ford Henri R.ORCID

Abstract

AbstractMitogen-activated kinase phosphatase Mkp-1 is an essential negative regulator of innate immune responses. In enterocytes, Mkp-1, which is transiently expressed in response to Toll-like receptor (TLR) ligands, plays a role as an initial step in establishing tolerance to bacteria and their pro-inflammatory molecules. Mkp-1 has a very short half-life (about 30 min) in IEC-6 enterocytes. Here we examined the mechanism of Mkp-1 rapid degradation in IEC-6 cells. Immunoprecipitation and proteolysis inhibitor analysis indicated that Mkp-1 is monoubiquitinated and degraded by proteasome. Dominant negative ubiquitin increased Mkp-1 half-life, indicating involvement of ubiquitination in Mkp-1 degradation. Stability of Mkp-1 is not affected by LPS treatment, consistent with constitutive degradation. U0126, a potent and selective inhibitor of extracellular response kinase (ERK) had negligible effect on the stability of both intrinsic and ectopically expressed Mkp-1, therefore enterocytes, unlike other cell types, do not regulate Mkp-1 degradation via ERK-dependent phosphorylation. C-Truncations of the C-terminal non-catalytic domain (at amino acids 306, 331, and 357), the 306-330 deletion obliterating the potential PEST domains, as well as S296A mutation, but not S323A, S358A, or S363A mutations in potential ERK phosphorylation sites dramatically stabilized Mkp-1. C-terminal fusion of the non-catalytic C-terminal domain of Mkp-1 conferred accelerated degradation on the intrinsically stable green fluorescent protein. According to these results, rapid degradation of Mkp-1 in IEC-6 enterocytes is ubiquitin-proteasome-dependent and ERK-independent. Multiple elements of the C-terminal non-catalytic domain play essential roles in the formation of the complex rapid degradation signal.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3