Affiliation:
1. Children's Research Institute, Columbus Children's Hospital, Department of Pediatrics,
2. Department of Microbiology and Immunology, Indiana University, Indianapolis, IN 47405
3. Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43205
Abstract
Septic shock is a leading cause of morbidity and mortality. However, genetic factors predisposing to septic shock are not fully understood. Excessive production of proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, and the resultant severe hypotension play a central role in the pathophysiological process. Mitogen-activated protein (MAP) kinase cascades are crucial in the biosynthesis of proinflammatory cytokines. MAP kinase phosphatase (MKP)-1 is an archetypal member of the dual specificity protein phosphatase family that dephosphorylates MAP kinase. Thus, we hypothesize that knockout of the Mkp-1 gene results in prolonged MAP kinase activation, augmented cytokine production, and increased susceptibility to endotoxic shock. Here, we show that knockout of Mkp-1 substantially sensitizes mice to endotoxic shock induced by lipopolysaccharide (LPS) challenge. We demonstrate that upon LPS challenge, Mkp-1−/− cells exhibit prolonged p38 and c-Jun NH2-terminal kinase activation as well as enhanced TNF-α and interleukin (IL)-6 production compared with wild-type cells. After LPS challenge, Mkp-1 knockout mice produce dramatically more TNF-α, IL-6, and IL-10 than do wild-type mice. Consequently, Mkp-1 knockout mice develop severe hypotension and multiple organ failure, and exhibit a remarkable increase in mortality. Our studies demonstrate that MKP-1 is a pivotal feedback control regulator of the innate immune responses and plays a critical role in suppressing endotoxin shock.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
329 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献