Unraveling activation-related rearrangements and intrinsic divergence from ligand-induced conformational changes of the dopamine D3 and D2 receptors

Author:

Lee Kuo Hao,Shi LeiORCID

Abstract

AbstractEffective rational drug discovery targeting a specific protein hinges on understanding their functional states and distinguishing it from homologs. However, for the G protein coupled receptors, both the activation-related conformational changes (ACCs) and the intrinsic divergence among receptors can be misled or obscured by ligand-induced conformational changes (LCCs). Here, we unraveled ACCs and intrinsic divergence from LCCs of the dopamine D3 and D2 receptors (D3R and D2R), by analyzing their experimentally determined structures and the molecular dynamics simulation results of the receptors bound with different ligands. In addition to the ACCs common to other aminergic receptors, we revealed unique ACCs for these two receptors including TM5e and TM6e shifting away from TM2e and TM3e, with a subtle rotation of TM5e. In identifying intrinsic divergence, we found pronounced outward tilting of TM6e in the D2R compared to the D3R in both experimental structures and simulations with ligands in different scaffolds. This tilting was drastically reduced in the simulations of the receptors bound with nonselective full agonist quinpirole, suggesting a misleading impact of LCCs. Further, in the quinpirole-bound simulations, TM1 showed a greater disparity between these receptors, indicating that LCCs may obscure intrinsic divergence. In addition, our analysis showed that the impact of the nonconserved TM1 propagated to conserved Trp7.40and Glu2.65, both are ligand binding residues. We also found that the D2R exhibited heightened flexibility compared to the D3R in the extracellular portions of TMs 5, 6, and 7, potentially associated with its greater ligand binding site plasticity. Our results lay the groundwork for crafting ligands specifically targeting D2R or D3R with more precise pharmacological profiles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3