Spatiotemporal dynamics of successive activations across the human brain during simple arithmetic processing

Author:

Pinheiro-Chagas PedroORCID,Sava-Segal ClaraORCID,Akkol SerdarORCID,Daitch AmyORCID,Parvizi JosefORCID

Abstract

ABSTRACTPrevious neuroimaging studies have offered unique insights about the spatial organization of activations and deactivations across the brain, however these were not powered to explore the exact timing of events at the subsecond scale combined with precise anatomical source information at the level of individual brains. As a result, we know little about the order of engagement across different brain regions during a given cognitive task. Using experimental arithmetic tasks as a prototype for human-unique symbolic processing, we recorded directly across 10,076 brain sites in 85 human subjects (52% female) using intracranial electroencephalography (iEEG). Our data revealed a remarkably distributed change of activity in almost half of the sampled sites. Notably, an orderly successive activation of a set of brain regions - anatomically consistent across subjects-was observed in individual brains. Furthermore, the temporal order of activations across these sites was replicable across subjects and trials. Moreover, the degree of functional connectivity between the sites decreased as a function of temporal distance between regions, suggesting that information is partially leaked or transformed along the processing chain. Furthermore, in each activated region, distinct neuronal populations with opposite activity patterns during target and control conditions were juxtaposed in an anatomically orderly manner. Our study complements the prior imaging studies by providing hitherto unknown information about the timing of events in the brain during arithmetic processing. Such findings can be a basis for developing mechanistic computational models of human-specific cognitive symbolic systems.Significance statementOur study elucidates the spatiotemporal dynamics and anatomical specificity of brain activations across >10,000 sites during arithmetic tasks, as captured by intracranial EEG. We discovered an orderly, successive activation of brain regions, consistent across individuals, and a decrease in functional connectivity as a function of temporal distance between regions. Our findings provide unprecedented insights into the sequence of cognitive processing and regional interactions, offering a novel perspective for enhancing computational models of cognitive symbolic systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3