The Cardiac Calcium Handling Machinery is Remodeled in Friedreich’s Ataxia

Author:

Czornobil Roman,Abou-Assali Obada,Remily-Wood Elizabeth,Lynch David R,Noujaim Sami F.,Chidipi Bojjibabu

Abstract

AbstractBackgroundFriedreich’s ataxia (FA) is an inherited neurodegenerative disorder that causes progressive nervous system damage resulting in impaired muscle coordination. FA is the most common autosomal recessive form of ataxia and is caused by an expansion of the DNA triplet guanine–adenine–adenine (GAA) in the first intron of the Frataxin gene (FXN), located on chromosome 9q13. In the unaffected population, the number of GAA repeats ranges from 6 to 27 repetitions. In FA patients, GAA repeat expansions range from 44 to 1,700 repeats which decreases frataxin protein expression. Frataxin is a mitochondrial protein essential for various cellular functions, including iron metabolism. Reduced frataxin expression is thought to negatively affect mitochondrial iron metabolism, leading to increased oxidative damage. Although FA is considered a neurodegenerative disorder, FA patients display heart disease that includes hypertrophy, heart failure, arrhythmias, conduction abnormalities, and cardiac fibrosis.ObjectiveIn this work, we investigated whether abnormal Ca2+handling machinery is the molecular mechanism that perpetuates cardiac dysfunction in FA.MethodsWe used the frataxin knock-out (FXN-KO) mouse model of FA as well as human heart samples from donors with FA and from unaffected donors. ECG and echocardiography were used to assess cardiac function in the mice. Expression of calcium handling machinery proteins was assessed with proteomics and western blot. In left ventricular myocytes from FXN-KO and FXN-WT mice, the IonOptix system was used for calcium imaging, the seahorse assay was utilized to measure oxygen consumption rate (OCR), and confocal imaging was used to quantify the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS).ResultsWe found that major contractile proteins, including SERCA2a and Ryr2, were downregulated in human left ventricular samples from deceased donors with FA compared to unaffected donors, similar to the downregulation of these proteins in the left ventricular tissue from FXN-KO compared to FXN-WT. On the ECG, the RR, PR, QRS, and QTc were significantly longer in the FXN-KO mice compared to FXN-WT. The ejection fraction and fractional shortening were significantly decreased and left ventricular wall thickness and diameter were significantly increased in the FXN-KO mice versus FXN-WT. The mitochondrial membrane potential Δψm was depolarized, ROS levels were elevated, and OCR was decreased in ventricular myocytes from FXN-KO versus FXN-WT.ConclusionThe development of left ventricular contractile dysfunction in FA is associated with reduced expression of calcium handling proteins and mitochondrial dysfunction.

Publisher

Cold Spring Harbor Laboratory

Reference62 articles.

1. Cardiomyopathy in Friedreich Ataxia

2. Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion

3. Molecular Pathogenesis of Friedreich Ataxia

4. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities

5. 2nd;Lowell BB and Kahn CR. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proceedings of the National Academy of Sciences of the United States of America,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3