Improving Hi-C contact matrices using genome graphs

Author:

Shen YihangORCID,Yu Lingge,Qiu YutongORCID,Zhang Tianyu,Kingsford CarlORCID

Abstract

AbstractThree-dimensional chromosome structure plays an important role in fundamental genomic functions. Hi-C, a high-throughput, sequencing-based technique, has drastically expanded our comprehension of 3D chromosome structures. The first step of Hi-C analysis pipeline involves mapping sequencing reads from Hi-C to linear reference genomes. However, the linear reference genome does not incorporate genetic variation information, which can lead to incorrect read alignments, especially when analyzing samples with substantial genomic differences from the reference such as cancer samples. Using genome graphs as the reference facilitates more accurate mapping of reads, however, new algorithms are required for inferring linear genomes from Hi-C reads mapped on genome graphs and constructing corresponding Hi-C contact matrices, which is a prerequisite for the subsequent steps of the Hi-C analysis such as identifying topologically associated domains and calling chromatin loops. We introduce the problem of genome sequence inference from Hi-C data mediated by genome graphs. We formalize this problem, show the hardness of solving this problem, and introduce a novel heuristic algorithm specifically tailored to this problem. We provide a theoretical analysis to evaluate the efficacy of our algorithm. Finally, our empirical experiments indicate that the linear genomes inferred from our method lead to the creation of improved Hi-C contact matrices. These enhanced matrices show a reduction in erroneous patterns caused by structural variations and are more effective in accurately capturing the structures of topologically associated domains.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3