A Cellular Basis for Mapping Behavioural Structure

Author:

El-Gaby MohamadyORCID,Harris Adam Loyd,Whittington James C. R.,Dorrell William,Bhomick Arya,Walton Mark E.,Akam Thomas,Behrens Tim E. J.ORCID

Abstract

ABSTRACTTo flexibly adapt to new situations, our brains must understand the regularities in the world, but also in our own patterns of behaviour. A wealth of findings is beginning to reveal the algorithms we use to map the outside world1–6. In contrast, the biological algorithms that map the complex structured behaviours we compose to reach our goals remain enigmatic. Here we reveal a neuronal implementation of an algorithm for mapping abstract behavioural structure and transferring it to new scenarios. We trained mice on many tasks which shared a common structure organising a sequence of goals, but differed in the specific goal locations. Animals discovered the underlying task structure, enabling zero-shot inferences on the first trial of new tasks. The activity of most neurons in the medial Frontal cortex tiled progress-to-goal, akin to how place cells map physical space. These “goal-progress cells” generalised, stretching and compressing their tiling to accommodate different goal distances. In contrast, progress along the overall sequence of goals was not encoded explicitly. Instead a subset of goal-progress cells was further tuned such that individual neurons fired with a fixed task-lag from a particular behavioural step. Together these cells implemented an algorithm that instantaneously encoded the entire sequence of future behavioural steps, and whose dynamics automatically retrieved the appropriate action at each step. These dynamics mirrored the abstract task structure both on-task and during offline sleep. Our findings suggest that goal-progress cells in the medial frontal cortex may be elemental building blocks of schemata that can be sculpted to represent complex behavioural structures.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3