Author:
Wang Zhen,Liu Ziqi,Zhang Wei,Li Yanjun,Feng Yizhen,Lv Shaokang,Diao Han,Luo Zhaofeng,Yan Pengju,He Min,Li Xiaolin
Abstract
Aptamers are single-strand nucleic acid ligands, featuring high affinity and specificity to target molecules. Traditionally they are identified from large DNA/RNA libraries using in vitro methods, like Systematic Evolution of Ligands by Exponential Enrichment (SELEX). However, these libraries capture only a small fraction of theoretical sequence space, and various aptamer candidates are constrained by actual sequencing capabilities from the experiment. Addressing this, we proposed AptaDiff, the first in silico aptamer design and optimization method based on the diffusion model. Our Aptadiff can generate aptamers beyond the constraints of high-throughput sequencing data, leveraging motif-dependent latent embeddings from variational autoencoder, and can optimize aptamers by affinity-guided aptamer generation according to Bayesian optimization. Comparative evaluations revealed AptaDiff’s superiority over existing aptamer generation methods in terms of quality and fidelity across four high-throughput screening data targeting distinct proteins. Moreover, Surface Plasmon Resonance (SPR) experiments were conducted to validate the binding affinity of aptamers generated through Bayesian optimization for two target proteins. The results unveiled a significant boost of 87.9% and 60.2% in RU values1, along with a 3.6-fold and 2.4-fold decrease in KD values2for the respective target proteins. Notably, the optimized aptamers demonstrated superior binding affinity compared to top experimental candidates selected through SELEX, underscoring the promising outcomes of our AptaDiff in accelerating the discovery of superior aptamers.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献