UNSEG: unsupervised segmentation of cells and their nuclei in complex tissue samples

Author:

Kochetov Bogdan,Bell Phoenix,Garcia Paulo S.,Shalaby Akram S.,Raphael Rebecca,Raymond Benjamin,Leibowitz Brian J.,Schoedel Karen,Brand Rhonda M.,Brand Randall E.,Yu Jian,Zhang LinORCID,Diergaarde Brenda,Schoen Robert E.ORCID,Singhi Aatur,Uttam ShikharORCID

Abstract

ABSTRACTMultiplexed imaging technologies have made it possible to interrogate complex tumor microenvironments at sub-cellular resolution within their native spatial context. However, proper quantification of this complexity requires the ability to easily and accurately segment cells into their sub-cellular compartments. Within the supervised learning paradigm, deep learning based segmentation methods demonstrating human level performance have emerged. Here we present an unsupervised segmentation (UNSEG) method that achieves deep learning level performance without requiring any training data. UNSEG leverages a Bayesian-like framework and the specificity of nucleus and cell membrane markers to construct ana posterioriprobability estimate of each pixel belonging to the nucleus, cell membrane, or background. It uses this estimate to segment each cell into its nuclear and cell-membrane compartments. We show that UNSEG is more internally consistent and better at generalizing to the complexity of tissue samples than current deep learning methods. This allows UNSEG to unambiguously identify the cytoplasmic compartment of a cell, which we employ to demonstrate its use in an example biological scenario. Within the UNSEG framework, we also introduce a new perturbed watershed algorithm capable of stably and accurately segmenting a cell nuclei cluster into individual cell nuclei. Perturbed watershed can also be used as a standalone algorithm that researchers can incorporate within their supervised or unsupervised learning approaches to replace classical watershed. Finally, as part of developing UNSEG, we have generated a high-quality annotated gastrointestinal tissue dataset, which we anticipate will be useful for the broader research community. Segmentation, despite its long antecedents, remains a challenging problem, particularly in the context of tissue samples. UNSEG, an easy-to-use algorithm, provides an unsupervised approach to overcome this bottleneck, and as we discuss, can help improve deep learning based segmentation methods by providing a bridge between unsupervised and supervised learning paradigms.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3