Staphylococcus epidermidismetabolic adaptation and biofilm formation in response to varying oxygen

Author:

Pedroza-Dávila Ulrik H.,Uribe-Alvarez Cristina,Morales-García Lilia,Espinoza-Simón Emilio,Muhlia-Almazán Adriana,Chiquete-Félix Natalia,Uribe-Carvajal Salvador

Abstract

ABSTRACTStaphylococcus epidermidisis a Gram-positive saprophytic bacterium found in the microaerobic/anaerobic layers of the skin. It becomes a health hazard when introduced across the skin by punctures or wounds.S. epidermidisforms biofilms in low O2environments. As oxygen concentrations ([O2]) decreased, the metabolism ofS. epidermidiswas modified ranging from fully aerobic to anaerobic. Respiratory activity increased at high [O2], while anaerobically grown cells exhibited the highest rate of fermentation. High aerobic metabolism coincided with high hydrogen peroxide-mediated damage. Remarkably, the rate of growth decreased at low [O2] even though the concentration of ATP was high. Under these conditions bacteria associated into biofilms. Then, in the presence of metabolic inhibitors, biofilm formation decreased. It is suggested that when [O2] is lowS. epidermidisaccumulates ATP in order to synthesize the proteins and polysaccharides needed to attach to surfaces and form biofilms.ImportanceBacteria and humans coexist, establishing all kinds of relationships that may change from saprophytic to infectious as environmental conditions vary. S. epidermidis is saprophytic when living in the skin. Inside the organism it evokes a pathologic reaction and is thus rejected by the organism. Additionally it is forced to adapt to high oxygen concentrations, becoming vulnerable to reactive oxygen species, which may come from leukocyte attack. Avoiding both, high oxygen and leukocytes is a must for bacteria. Escaping from oxygen involves a clever response: whenever it finds a low oxygen environment it attaches to surfaces, associating into biofilms. Biofilms protectS. epidermidisagainst host cells. Understanding these responses is a must in order to develop treatments and prevent infection success.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3