Predictability in the evolution of Orthopteran cardenolide insensitivity

Author:

Yang Lu,Ravikanthachari Nitin,Mariño-Pérez Ricardo,Deshmukh Riddhi,Wu Mariana,Rosenstein Adam,Kunte Krushnamegh,Song Hojun,Andolfatto Peter

Abstract

AbstractThe repeated evolutionary specialisation of distantly related insects to cardenolide-containing host plants provides a stunning example of parallel adaptation. Hundreds of herbivorous insect species have independently evolved insensitivity to cardenolides, which are potent inhibitors of the alpha-subunit of Na+, K+-ATPase (ATPα). Previous studies investigating ATPα-mediated cardenolide insensitivity in five insect orders have revealed remarkably high levels of parallelism in the evolution of this trait, including the frequent occurrence of parallel amino acid substitutions at two sites and recurrent episodes of duplication followed by neo-functionalisation. Here we add data for a sixth insect order, Orthoptera, which includes an ancient group of highly aposematic cardenolide-sequestering grasshoppers in the family Pyrgomorphidae. We find that Orthopterans exhibit largely predictable patterns of evolution of insensitivity established by sampling other insect orders. Taken together the data lend further support to the proposal that negative pleiotropic constraints are a key determinant in the evolution of cardenolide insensitivity in insects. Furthermore, analysis of our expanded taxonomic survey implicates positive selection acting on site 111 of cardenolide-sequestering species with a single-copy of ATPα, and sites 115, 118 and 122 in lineages with neo-functionalised duplicate copies, all of which are sites of frequent parallel amino acid substitution.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Stern D. 2010 Evolution, development, and the predictable genome. Roberts & Co.

2. The genetic theory of adaptation: a brief history

3. Natural selection and the concept of a protein space;Nature,1970

4. CONVERGENCE, ADAPTATION, AND CONSTRAINT

5. What does the Comparative Method Reveal About Adaptation?

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3