Disrupting butterfly caterpillar microbiomes does not impact their survival and development

Author:

Phalnikar Kruttika1ORCID,Kunte Krushnamegh1ORCID,Agashe Deepa1ORCID

Affiliation:

1. National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, India

Abstract

Associations with gut microbes are believed to play crucial roles in the physiology, immune function, development and behaviour of insects. However, microbiome sequencing has recently suggested that butterflies are an anomaly, because their microbiomes do not show strong host- and developmental stage-specific associations. We experimentally manipulated butterfly larval gut microbiota and found that disrupting gut microbes had little influence on larval survival and development. Larvae of the butterflies Danaus chrysippus and Ariadne merione that fed on chemically sterilized or antibiotic-treated host plant leaves had significantly reduced bacterial loads, and their gut bacterial communities were disrupted substantially. However, neither host species treated this way suffered a significant fitness cost: across multiple experimental blocks, treated and control larvae had similar survival, growth and development. Furthermore, re-introducing microbes from the excreta of control larvae did not improve larval growth and survival. Thus, these butterfly larvae did not appear to rely on specialized gut bacteria for digestion, detoxification, biomass accumulation and metamorphosis. Our experiments thus show that dependence on gut bacteria for growth and survival is not a universal phenomenon across insects. Our findings also caution that strategies which target gut microbiomes may not always succeed in controlling Lepidopteran pests.

Funder

National Centre for Biological Sciences

International Centre for Genetic Engineering and Biotechnology

University Grants Commission

The Wellcome Trust DBT India Alliance

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3