Asymmetric histone inheritance regulates stem cell fate in Drosophila midgut

Author:

Zion Emily,Chen XinORCID

Abstract

AbstractA fundamental question in developmental biology is how distinct cell fates are established and maintained through epigenetic mechanisms in multicellular organisms. Here, we report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically inherited by the distinct daughter cells during asymmetric division of Drosophila intestinal stem cells (ISCs). By contrast, in symmetrically dividing ISCs that produce two self-renewed stem cells, old and new H3 and H4 show symmetric inheritance patterns. These results indicate that asymmetric histone inheritance is tightly associated with the distinct daughter cell fates. To further understand the biological significance of this asymmetry, we express a mutant histone that compromises asymmetric histone inheritance pattern. We find increased symmetric ISC division and ISC tumors during aging under this condition. Together, our results demonstrate that asymmetric histone inheritance is important for establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in asymmetrically dividing male germline stem cells in Drosophila. Therefore, this work sheds light on the principles of histone inheritance in regulating stem cell fate in vivo.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3