Abstract
AbstractModern spatial transcriptomics methods can target thousands of different types of RNA transcripts in a single slice of tissue. Many biological applications demand a high spatial density of transcripts relative to the imaging resolution, leading to partial mixing of transcript rolonies in many voxels; unfortunately, current analysis methods do not perform robustly in this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing through Non-negative Spatial Regression (BarDensr): we start with a generative model of the physical process that leads to the observed image data and then apply sparse convex optimization methods to estimate the underlying (demixed) rolony densities. We apply Bar-Densr to simulated and real data and find that it achieves state of the art signal recovery, particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr is fast and parallelizable. We provide open-source code as well as an implementation for the ‘NeuroCAAS’ cloud platform.Author SummarySpatial transcriptomics technologies allow us to simultaneously detect multiple molecular targets in the context of intact tissues. These experiments yield images that answer two questions: which kinds of molecules are present, and where are they located in the tissue? In many experiments (e.g., mapping RNA expression in fine neuronal processes), it is desirable to increase the signal density relative to the imaging resolution. This may lead to mixing of signals from multiple RNA molecules into single imaging voxels; thus we need to demix the signals from these images. Here we introduce BarDensr, a new computational method to perform this demixing. The method is based on a forward model of the imaging process, followed by a convex optimization approach to approximately ‘invert’ mixing induced during imaging. This new approach leads to significantly improved performance in demixing imaging data with dense expression and/or low spatial resolution.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献