ISTDECO: In Situ Transcriptomics Decoding by Deconvolution

Author:

Andersson Axel,Diego Ferran,Hamprecht Fred A.,Wählby Carolina

Abstract

In Situ Transcriptomics (IST) is a set of image-based transcriptomics approaches that enables localisation of gene expression directly in tissue samples. IST techniques produce multiplexed image series in which fluorescent spots are either present or absent across imaging rounds and colour channels. A spot’s presence and absence form a type of barcoded pattern that labels a particular type of mRNA. Therefore, the expression of a gene can be determined by localising the fluorescent spots and decode the barcode that they form. Existing IST algorithms usually do this in two separate steps: spot localisation and barcode decoding. Although these algorithms are efficient, they are limited by strictly separating the localisation and decoding steps. This limitation becomes apparent in regions with low signal-to-noise ratio or high spot densities. We argue that an improved gene expression decoding can be obtained by combining these two steps into a single algorithm. This allows for an efficient decoding that is less sensitive to noise and optical crowding.We present IST Decoding by Deconvolution (ISTDECO), a principled decoding approach combining spectral and spatial deconvolution into a single algorithm. We evaluate ISTDECO on simulated data, as well as on two real IST datasets, and compare with state-of-the-art. ISTDECO achieves state-of-the-art performance despite high spot densities and low signal-to-noise ratios. It is easily implemented and runs efficiently using a GPU.ISTDECO implementation, datasets and demos are available online at:github.com/axanderssonuu/istdeco

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. Allan, D. , Caswell, T. A. , Keim, N. , Boulogne, F. , Perry, R. W. , and Uieda, L. (2014). Trackpy: Trackpy v0.2.4.

2. Andersson, A. , Diego, F. , Hamprecht, F. A. , and Wählby, C. (2021). In Situ Sequencing data used in “ISTDECO: In Situ Transcriptomics Decoding by Deconvolution”.

3. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy

4. Bergstra, J. , Yamins, D. , and Cox, D. (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In International conference on machine learning, pages 115–123. PMLR.

5. Image deblurring with poisson data: from cells to galaxies;Inverse Problems,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3