Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab and saliva patient samples

Author:

Dudley Dawn M.ORCID,Newman Christina M.ORCID,Weiler Andrea M.,Ramuta Mitchell D.ORCID,Shortreed Cecilia G.,Heffron Anna S.ORCID,Accola Molly A.,Rehrauer William M.ORCID,Friedrich Thomas C.ORCID,O’Connor David H.ORCID

Abstract

AbstractSARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed samples, albeit with approximately 100-fold lower sensitivity than qRT-PCR. We demonstrate that adding lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Overall, the limit of detection (LOD) of RT-LAMP using direct nasopharyngeal swab or saliva samples without RNA extraction is 1×105-1×106 copies/ml. This LOD is sufficient to detect samples from which infectious virus can be cultured. Therefore, samples that test positive in this assay contain levels of virus that are most likely to perpetuate transmission. Furthermore, purified RNA in this assay achieves a similar LOD to qRT-PCR and we provide a revised method to work directly with saliva as starting material. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 screening programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3