Author:
Niu Qiang,Zhang Ran,Yang Yuping
Abstract
High sensitivity and quantitative detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S protein) is of great significance for the diagnosis and treatment of coronaviruses. Here, we utilized terahertz time-domain spectroscopy (THz-TDS) integrated with a metamaterial (MM)-based biosensor and biological modification technology to demonstrate a high accuracy and label-free detection of the SARS-CoV-2 S1 protein by comparing the changes of the dielectric environment before and after binding the S1 protein. To confirm the sensing characteristics observed in the experiments and provide a further insight into the sensing mechanisms, we performed numerical simulations through varying the thickness, quantity, position, and refractive index of analyte aggregates. The sensitivity increases with the increase of the number of gaps and the amount of analyte near the gaps, which convincingly proves that the frequency shift and sensing performance are strongly influenced by the field enhancement and near-field coupling at the gap area.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献