Chloroform-injection (CI) and Spontaneous-phase-transition (SPT) are Novel Methods, Simplifying the Fabrication Liposomes

Author:

Khan Muhammad IjazORCID,Ahmed Naveed,Umer Muhammad FarooqORCID,Riaz Amina,Ahmad Nasir Mehmood,Khan Gul MajidORCID

Abstract

AbstractIntricate formulation methods and/or use of sophisticated equipment limit the prevalence of liposomal dosage-forms. Simple techniques are developed to assemble amphiphiles into globular lamellae while transiting from immiscible organic to the aqueous phase. Various parameters are optimized by injecting chloroform solution of amphiphiles into the aqueous phase and subsequent removal of the organic phase. Further simplification is achieved by reorienting amphiphiles through a spontaneous phase transition in a swirling biphasic system during evaporation of the organic phase under vacuum. Although the chloroform injection yields smaller size and PDI yet spontaneous phase transition method overrides simplicity and productivity. The size distribution of liposomes and solid/solvent ratio in both or any phases of formulation show direct relation. Surface charge dependant large unilamellar vesicles with a narrow distribution have PDI <0.4 in 10 μM saline. As small and monodisperse liposomes are prerequisites in targeted drug delivery strategies. Hence the desired size distribution <200 d.nm and PDI <0.15 is obtained through serial membrane-filtration method. Phosphatidylcholine/water 4 μmol/ml is achieved at a temperature of 10°C below the phase-transition temperature of phospholipids ensuing suitability for thermolabile entities and high entrapment efficiency. Both methods furnish the de-novo rearrangement of amphophiles into globular lamellae aiding in the larger entrapped volume. The immiscible organic phase facilitates faster and complete removable of the organic phase. High cholesterol content (55.6 mol%) imparts stability in primary hydration medium at 5+3°C for 6 months in light-protected type-1 glass vial. Collectively the reported methods are novel, scalable, time-efficient yielding high productivity in simple equipment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3