Optimization and scaling of patient-derived brain organoids uncovers deep phenotypes of disease

Author:

Shah Kevan,Bedi Rishi,Rogozhnikov Alex,Ramkumar Pavan,Tong Zhixiang,Rash Brian,Stanton Morgan,Sorokin Jordan,Apaydin Cagsar,Batarse Anthony,Bergamaschi Julia,Blattner Robert,Brown Spencer,Bosshardt Anthony,Castrillo Carlos,Dang Brenda,Drusinsky Shiron,Enriquez Luigi,Grayson David,Hilliard Juliana,Hsu Pei-Ken,Johnson Chili,Jones Ryan,Lash Andy,Lee Chia-Yao,Li Kelly,McKay Austin,Mount Elliot,Nicola Justin,Oumzil Ismael,Paek Justin,Pascoe Deborah,Piepho Arden,Poust Sean,Quang Daphne,Schultz Matthew,Sims Jessica,Taylor Patrick,Treiman Geffen,Wueseke Oliver,Young Noah,Pollen AlexORCID,Flanzer Doug,Chao Daniel,Skibinski Gaia,Kato Saul,Escola G. SeanORCID

Abstract

AbstractCerebral organoids provide unparalleled access to human brain development in vitro. However, variability induced by current culture methodologies precludes using organoids as robust disease models. To address this, we developed an automated Organoid Culture and Assay (ORCA) system to support longitudinal unbiased phenotyping of organoids at scale across multiple patient lines. We then characterized organoid variability using novel machine learning methods and found that the contribution of donor, clone, and batch is significant and remarkably consistent over gene expression, morphology, and cell-type composition. Next, we performed multi-factorial protocol optimization, producing a directed forebrain protocol compatible with 96-well culture that exhibits low variability while preserving tissue complexity. Finally, we used ORCA to study tuberous sclerosis, a disease with known genetics but poorly representative animal models. For the first time, we report highly reproducible early morphological and molecular signatures of disease in heterozygous TSC+/− forebrain organoids, demonstrating the benefit of a scaled organoid system for phenotype discovery in human disease models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3