Cell specificity of adeno-associated virus (AAV) serotypes in human cortical organoids

Author:

Stanton Morgan M.ORCID,Hariani Harsh N.ORCID,Sorokin Jordan,Taylor Patrick M.,Modan Sara,Rash Brian G.ORCID,Rao Sneha B.ORCID,Enriquez Luigi,Quang Daphne,Hsu Pei-KenORCID,Paek Justin,Owango Dorah,Castrillo Carlos,Nicola Justin,Ramkumar Pavan,Lash Andy,Flanzer Douglas,Shah KevanORCID,Kato SaulORCID,Skibinski Gaia

Abstract

AbstractHuman-derived cortical organoids (hCOs) recapitulate cell diversity and 3D structure found in the human brain and offer a promising model for discovery of new gene therapies targeting neurological disorders. Adeno-associated viruses (AAVs) are the most promising vehicles for non-invasive gene delivery to the central nervous system (CNS), but reliable and reproduciblein vitromodels to assess their clinical potential are lacking. hCOs can take on these issues as they are a physiologically relevant model to assess AAV transduction efficiency, cellular tropism, and biodistribution within the tissue parenchyma, all of which could significantly modulate therapeutic efficacy. Here, we examine a variety of naturally occurring AAV serotypes and measure their ability to transduce neurons and glia in hCOs from multiple donors. We demonstrate cell tropism driven by AAV serotype and hCO donor and quantify fractions of neurons and astrocytes transduced with GFP as well as overall hCO health.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Gene therapy for neurological disorders: progress and prospects

2. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease;PLoS One,2019

3. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes;Glia,2018

4. Gottlieb, S. Statement from FDA Commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., Director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies. fda.gov https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics (2019).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3