Abstract
AbstractHuman-derived cortical organoids (hCOs) recapitulate cell diversity and 3D structure found in the human brain and offer a promising model for discovery of new gene therapies targeting neurological disorders. Adeno-associated viruses (AAVs) are the most promising vehicles for non-invasive gene delivery to the central nervous system (CNS), but reliable and reproduciblein vitromodels to assess their clinical potential are lacking. hCOs can take on these issues as they are a physiologically relevant model to assess AAV transduction efficiency, cellular tropism, and biodistribution within the tissue parenchyma, all of which could significantly modulate therapeutic efficacy. Here, we examine a variety of naturally occurring AAV serotypes and measure their ability to transduce neurons and glia in hCOs from multiple donors. We demonstrate cell tropism driven by AAV serotype and hCO donor and quantify fractions of neurons and astrocytes transduced with GFP as well as overall hCO health.
Publisher
Cold Spring Harbor Laboratory
Reference35 articles.
1. Gene therapy for neurological disorders: progress and prospects
2. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer’s disease;PLoS One,2019
3. Synthetic AAV/CRISPR vectors for blocking HIV-1 expression in persistently infected astrocytes;Glia,2018
4. Gottlieb, S. Statement from FDA Commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., Director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies. fda.gov https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics (2019).