Host-to-Host Airborne Transmission As a Multiphase Flow Problem For Science-Based Social Distance Guidelines

Author:

Balachandar S.ORCID,Zaleski S.,Soldati A.,Ahmadi G.,Bourouiba L.

Abstract

AbstractCOVID-19 pandemic has strikingly demonstrated how important it is to develop fundamental knowledge related to generation, transport and inhalation of pathogen-laden droplets and their subsequent possible fate as airborne particles, or aerosols, in the context of human to human transmission. It is also increasingly clear that airborne transmission is an important contributor to rapid spreading of the disease. In this paper, we discuss the processes of droplet generation by exhalation, their potential transformation into airborne particles by evaporation, transport over long distances by the exhaled puff and by ambient air turbulence, and final inhalation by the receiving host as interconnected multiphase flow processes. A simple model for the time evolution of droplet/aerosol concentration is presented based on a theoretical analysis of the relevant physical processes. The modeling framework along with detailed experiments and simulations can be used to study a wide variety of scenarios involving breathing, talking, coughing and sneezing and in a number of environmental conditions, as humid or dry atmosphere, confined or open environment. Although a number of questions remain open on the physics of evaporation and coupling with persistence of the virus, it is clear that with a more reliable understanding of the underlying flow physics of virus transmission one can set the foundation for an improved methodology in designing case-specific social distancing and infection control guidelines.

Publisher

Cold Spring Harbor Laboratory

Reference123 articles.

1. AEROSOL INHALABILITY IN LOW AIR MOVEMENT ENVIRONMENTS

2. INVESTIGATIONS INTO DEFINING INHALABLE DUST

3. Aerosol Emission and Superemission during Human Speech Increase with Voice Loudness;Scientific Reports,2019

4. Atkinson, J. , Chartier, Y. , Pessoa-silva, C.L. , Jensen, P. , and Li, Y ,, WHO Report: Natural Ventilation for Infection Control in Health-Care Settings Edited By: World Health Organization, 2009.

5. An experimental framework to capture the flow dynamics of droplets expelled by a sneeze;Experiments in Fluids,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3