Growth of respiratory droplets in cold and humid air

Author:

Ng Chong ShenORCID,Chong Kai LeongORCID,Yang Rui,Li MogengORCID,Verzicco RobertoORCID,Lohse DetlefORCID

Abstract

The ambient conditions surrounding liquid droplets determine their growth or shrinkage. However, the precise fate of a liquid droplet expelled from a respiratory puff as dictated by its surroundings and the puff itself has not yet been fully quantified. From the view of airborne disease transmission, such as SARS-CoV-2, knowledge of such dependencies are critical. Here we employ direct numerical simulations (DNS) of a turbulent respiratory vapour puff and account for the mass and temperature exchange with respiratory droplets and aerosols. In particular, we investigate how droplets respond to different ambient temperatures and relative humidity (RH) by tracking their Lagrangian statistics. We reveal and quantify that in cold and humid environments, as there the respiratory puff is supersaturated, expelled droplets can first experience significant growth, and only later followed by shrinkage, in contrast to the monotonic shrinkage of droplets as expected from the classical view by William F. Wells (1934). Indeed, cold and humid environments diminish the ability of air to hold water vapour, thus causing the respiratory vapour puff to super-saturate. Consequently, the super-saturated vapour field drives the growth of droplets that are caught and transported within the humid puff. To analytically predict the likelihood for droplet growth, we propose a model for the axial RH based on the assumption of a quasi-stationary jet. Our model correctly predicts super-saturated RH conditions and is in good quantitative agreement with our DNS. Our results culminate in a temperature-RH map that can be employed as an indicator for droplet growth or shrinkage.Significance StatementInfluence of environmental conditions on airborne diseases transmission is an important issue, especially during the pandemic of COVID-19. Human-to-human transmission is mediated by the transport of virus-laden respiratory droplets. Here we investigate the problem from a fluid mechanics perspective by conducting numerical simulations to quantify the fate of respiratory droplets in a warm humid coughing puff under different ambient conditions. We reveal a non-intuitive regime with considerable growth of respiratory droplets, dominated by a super-saturated vapour field, preferentially occurring in cold and humid environments. We further propose a theoretical model that accurately predicts the condition for droplet growth. Our work should inform socializing policies and ventilation strategies for controlling indoor ambient conditions to mitigate dispersion of droplets from asymptomatic individuals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3