The Fluid Dynamics of Disease Transmission

Author:

Bourouiba Lydia1

Affiliation:

1. The Fluid Dynamics of Disease Transmission Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;

Abstract

For an infectious disease such as the coronavirus disease 2019 (COVID-19) to spread, contact needs to be established between an infected host and a susceptible one. In a range of populations and infectious diseases, peer-to-peer contact modes involve complex interactions of a pathogen with a fluid phase, such as isolated complex fluid droplets or a multiphase cloud of droplets. This is true for exhalations including coughs or sneezes in humans and animals, bursting bubbles leading to micron-sized droplets in a range of indoor and outdoor settings, or impacting raindrops and airborne pathogens in foliar diseases transferring pathogens from water to air via splashes. Our mechanistic understanding of how pathogens actually transfer from one host or reservoir to the next remains woefully limited, with the global consequences that we are all experiencing with the ongoing COVID-19 pandemic. This review discusses the emergent area of the fluid dynamics of disease transmission. It highlights a new frontier and the rich multiscale fluid physics, from interfacial to multiphase and complex flows, that govern contact between an infected source and a susceptible target in a range of diseases.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

Cited by 192 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3