Viscous influences on impulsively generated focused jets

Author:

Cheng Xianggang1ORCID,Chen Xiao-Peng11,Ding Hang2,Zhang Chun-Yu2ORCID,Hu Haibao1,Jia Laibing3ORCID

Affiliation:

1. Northwestern Polytechnical University

2. University of Science and Technology of China

3. University of Strathclyde

Abstract

Impulsively generated focused jets play a significant role in various applications, including inkjet printing, needle-free drug delivery, and microfluidic devices. As the demand for generating jets and droplets from medium to highly viscous liquids increases, understanding the role of viscosity in jetting dynamics becomes crucial. While previous studies have examined the viscous effects on walls, the impact on free surfaces has not been thoroughly understood. This study aims to bridge this gap by integrating experiments with numerical simulations to investigate the viscous effects on focused jet formation. We demonstrate that mass and momentum transfer along the tangential direction of the free surface contribute to focused jet formation, and viscosity plays a key role in this transfer process. The viscosity-induced diffusion of the shear flow and vorticity near the free surface reduces the jet speed. Based on experimental observations and simulation results, we propose an equation to predict the viscous jet velocity. These findings offer new perspectives on viscous interface dynamics in advanced manufacturing and biomedical applications. Published by the American Physical Society 2024

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Innovation Capability Support Program of Shaanxi

Royal Society Research Fund

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3