Abstract
AbstractLandscape connectedness shapes the exchange of individuals among patches, and hence metapopulation connectivity and dynamics. Connectedness, and its resulting effects on connectivity are therefore rightfully central in conservation biology. However, besides determining demographic fluxes of individuals between patches, connectedness also generates phenotypic sorting and thus impacts local and regional eco-evolutionary dynamics. Despite the central role of connectedness, its effects on individual phenotypic heterogeneity and spatial organization are so far neglected in theory and applications.Through experimental metapopulations of Tetranychus urticae (two-spotted spider mite) with three levels of landscape connectedness and by regularly removing phenotypic structure in a subset of these populations, we tested how regional and local population dynamics are determined both by network connectedness and phenotypic spatial organization.We find that the self-organizing phenotypic spatial structure increases local equilibrium population sizes and variability. It in contrast dampens the effects of imposed connectedness differences on population sizes and is therefore anticipated to improve metapopulation persistence. Contrary to theoretical expectations, the most locally connected patches within the network showed an overall reduced local population size, possibly originating from a faster depletion of resources from immigrants or transiting individuals.This experiment shows how metapopulation dynamics can significantly deviate from theoretical expectations due to individual heterogeneity. This potential rescue effect stemming from phenotypical self-organization in space is a key point to consider for conservation actions, especially based on translocations.
Publisher
Cold Spring Harbor Laboratory