Individual heterogeneity and its importance for metapopulation dynamics

Author:

Masier StefanoORCID,Dahirel MaximeORCID,Mortier FrederikORCID,Bonte DriesORCID

Abstract

AbstractLandscape connectedness shapes the exchange of individuals among patches, and hence metapopulation connectivity and dynamics. Connectedness, and its resulting effects on connectivity are therefore rightfully central in conservation biology. However, besides determining demographic fluxes of individuals between patches, connectedness also generates phenotypic sorting and thus impacts local and regional eco-evolutionary dynamics. Despite the central role of connectedness, its effects on individual phenotypic heterogeneity and spatial organization are so far neglected in theory and applications.Through experimental metapopulations of Tetranychus urticae (two-spotted spider mite) with three levels of landscape connectedness and by regularly removing phenotypic structure in a subset of these populations, we tested how regional and local population dynamics are determined both by network connectedness and phenotypic spatial organization.We find that the self-organizing phenotypic spatial structure increases local equilibrium population sizes and variability. It in contrast dampens the effects of imposed connectedness differences on population sizes and is therefore anticipated to improve metapopulation persistence. Contrary to theoretical expectations, the most locally connected patches within the network showed an overall reduced local population size, possibly originating from a faster depletion of resources from immigrants or transiting individuals.This experiment shows how metapopulation dynamics can significantly deviate from theoretical expectations due to individual heterogeneity. This potential rescue effect stemming from phenotypical self-organization in space is a key point to consider for conservation actions, especially based on translocations.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3