High-sensitivity monitoring of ctDNA by patient-specific sequencing panels and integration of variant reads

Author:

Wan Jonathan C. M.ORCID,Heider KatrinORCID,Gale Davina,Murphy Suzanne,Fisher Eyal,Morris James,Mouliere FlorentORCID,Chandrananda Dineika,Marshall Andrea,Gill Andrew B.,Chan Pui Ying,Barker Emily,Young Gemma,Cooper Wendy N.ORCID,Hudecova Irena,Marass Francesco,Bignell Graham R.,Alifrangis Constantine,Middleton Mark R.,Gallagher Ferdia A.,Parkinson Christine,Durrani Amer,McDermott Ultan,Smith Christopher G.ORCID,Massie Charles,Corrie Pippa G.,Rosenfeld Nitzan

Abstract

AbstractCirculating tumor-derived DNA (ctDNA) can be used to monitor cancer dynamics noninvasively. Patients with small tumors have few copies of ctDNA in plasma, resulting in limited sensitivity to detect low-volume or residual disease. We show that sampling limitations can be overcome and sensitivity for ctDNA detection can be improved by massively parallel sequencing when hundreds to thousands of mutations are identified by tumor genotyping. We describe the INtegration of VAriant Reads (INVAR) analysis pipeline, which combines patient-specific mutation lists with both custom error-suppression methods and signal enrichment based on biological features of ctDNA. In this framework, the sensitivity can be estimated independently for each sample based on the number of informative reads, which is the product of the number of mutations analyzed and the average depth of unique sequencing reads. We applied INVAR to deep sequencing data generated by custom hybrid-capture panels, and showed that when ~106 informative reads were obtained INVAR allowed detection of tumor-derived DNA fractions to parts per million (ppm). In serial samples from patients with advanced melanoma on treatment, we detected ctDNA when imaging confirmed tumor volume of ~1cm3. In patients with resected early-stage melanoma, ctDNA was detected in 40% of patients who later relapsed, with higher rates of detection when more informative reads were obtained. We further demonstrated that INVAR can be generalized and allows improved detection of ctDNA from whole-exome and low-depth whole-genome sequencing data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3