Abstract
Rare species are vital members of a microbial community, but retrieving their genomes is difficult because of their low abundance. The ReadUntil (RU) approach allows nanopore devices to sequence specific DNA molecules selectively in real time, which provides an opportunity for enriching rare species. Despite the robustness of enriching rare species by reducing the sequencing depth of known host sequences, such as the human genome, there is still a gap in RU-based enriching of rare species in environmental samples whose community composition is unclear, and many rare species have poor or incomplete reference genomes in public databases. Therefore, here we present metaRUpore to overcome this challenge. When we applied metaRUpore to a thermophilic anaerobic digester (TAD) community and human gut microbial community, it reduced coverage of the high-abundance populations and modestly increased (∼2×) the genome coverage of the rare taxa, facilitating successful recovery of near-finished metagenome-assembled genomes (nf-MAGs) of rare species. The simplicity and robustness of the approach make it accessible for laboratories with moderate computational resources, and hold the potential to become the standard practice in future metagenomic sequencing of complicated microbiomes.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Center for Computational Science and Engineering at Southern University of Science and Technology
SUSTech
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献