Pathway-Specific Polygenic Scores Improve Cross-Ancestry Prediction of Psychosis and Clinical Outcomes

Author:

Tubbs Justin D.ORCID,Leung Perry B.M.,Zhong Yuanxin,Zhan Na,Hui Tomy C.K.,Ho Karen K.Y.,Hung Karen S.Y.,Cheung Eric F.C.,So Hon-Cheong,Lui Simon S.Y.,Sham Pak C.ORCID

Abstract

AbstractPsychotic disorders are debilitating conditions with disproportionately high public health burden. Genetic studies indicate high heritability, but current polygenic scores (PGS) account for only a fraction of variance in psychosis risk. PGS often show poor portability across ancestries, performing significantly worse in non-European populations. Pathway-specific PGS (pPGS), which restrict PGS to genomic locations within distinct biological units, could lead to increased mechanistic understanding of pathways that lead to risk and improve cross-ancestry prediction by reducing noise in genetic predictors. This study examined the predictive power of genome-wide PGS and nine pathway-specific pPGS in a unique Chinese-ancestry sample of deeply-phenotyped psychosis patients and non-psychiatric controls. We found strong evidence for the involvement of schizophrenia-associated risk variants within “nervous system development” (p=2.5e-4) and “regulation of neuron differentiation” pathways (p=3.0e-4) in predicting risk for psychosis. We also found the “ion channel complex” pPGS, with weights derived from GWAS of bipolar disorder, to be strongly associated with the number of inpatient psychiatry admissions a patient experiences (p=1.5e-3) and account for a majority of the signal in the overall bipolar PGS. Importantly, although the schizophrenia genome-wide PGS alone explained only 3.7% of the variance in liability to psychosis in this Chinese ancestry sample, the addition of the schizophrenia-weighted pPGS for “nervous system development” and “regulation of neuron differentiation” increased the variance explained to 6.9%, which is on-par with the predictive power of PGS in European ancestry samples. Thus, not only can pPGS provide greater insight into mechanisms underlying genetic risk for disease and clinical outcomes, but may also improve cross-ancestry risk prediction accuracy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3