Spontaneous dynamics of hippocampal place fields in a model of combinatorial competition among stable inputs

Author:

Savelli FrancescoORCID

Abstract

AbstractWe present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization—ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic.Significance StatementIn both AI and theoretical neuroscience, learning systems often rely on the asymptotic convergence of slow-acting learning rules applied to input spaces that are presumed to be sampled repeatedly, for example over developmental timescales. Place cells of the hippocampus testify to a neural system capable of rapidly encoding cognitive variables—such as the animal’s position in space—from limited experience. These internal representations undergo “spontaneous” changes over time, spurring much interest in their cognitive significance and underlying mechanisms. We investigate a model suggesting that some of these changes could be a tradeoff of rapid learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3